A new insight into the initial step in the Fischer-Tropsch synthesis: CO dissociation on Ru surfaces.

نویسندگان

  • Hongping Li
  • Gang Fu
  • Xin Xu
چکیده

In the present work, we have investigated the CO dissociation on corrugated Ru(1121) and the stepped Ru(0001) surfaces by means of density functional theory with slab models. Our results show that, while the direct CO dissociation is preferred on the six-fold site of Ru(1121), the H-assisted CO dissociation is found to be favored on the B5 site of the stepped Ru(0001) surface. Furthermore, we have studied the effects of co-adsorbed spectator species on the CO dissociation mechanisms. Our results demonstrate that spectators can change the potential energy landscape dramatically, such that different reaction mechanisms can be favored in the presence of different spectators. Neither the H-assisted CO dissociation mechanism nor the CO direct dissociation mechanism should be overlooked at authentic ambient conditions. This work emphasizes a dynamic picture of the reaction mechanisms due to the inherent structural and compositional inhomogeneity on surfaces. Different mechanisms can work together as different active sites will co-exist on a real catalyst surface, and the reaction preferences on an active site can vary as the adsorbate compositions on surfaces are varying during the course of the reactions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A review of Fischer-Tropsch synthesis on the cobalt based catalysts

Fischer-Tropsch synthesis is a promising route for production of light olefins via CO hydrogenation over transition metals. Co is one of the most active metals for Fischer-Tropsch synthesis. Some different variables such as preparation parameters and operational factors can strongly affect the selectivity of Fischer-Tropsch synthesis toward the special products. In the case of preparat...

متن کامل

Effects of Different Loadings of Ru and Re on Physico-Chemical Properties and Performance of 15% Co/Al2O3 FTS Catalysts

An extensive study of Fischer-Tropsch synthesis (FTS) on alumina-supported cobalt catalysts promoted with different amounts of ruthenium and rhenium is reported. Up to 2 wt% of promoters, are added to the catalyst by coimpregnation. The catalysts are characterized by different methods including: BET physisorption, X-ray diffraction, hydrogen chemisorption, and temperature-programmed reducti...

متن کامل

Accelerated Deactivation and Activity Recovery Studies of Ruthenium and Rhenium Promoted Cobalt Catalysts in Fischer-Tropsch Synthesis

Accelerated deactivation of Co/Al2O3 catalysts in Fischer-Tropsch synthesis and the effect of Re and Ru as the catalytic promoters are reported. 15wt% Co/Al2O3 catalyst and 1wt% Ru and 1.4wt% Re  promoted cobalt catalysts have been formulated and extensively characterized. The deactivation of the unpromoted cobalt catalyst and those promoted with ...

متن کامل

The Effect of Cu Impurity on the CO-dissociation Mechanism on the Fe (100) Surface: A Full Potential DFT Study

In this study, the theoretical calculations of CO dissociation were carried out on Cu-Fe alloy surface by a full-potential method, which made more accurate results especially on the prediction of adsorption energies. This process may be governed by either a direct route or a H-assisted via HCO and COH intermediates pathways. In comparison to the pure surface Fe (100), the presence of Cu atom en...

متن کامل

Fischer–Tropsch Synthesis with Cu-Co Nanocatalysts Prepared Using Novel Inorganic Precursor Complex

The structural properties and activities of Cu-Co catalysts used in Fischer-Tropsch synthesis are explored according to their method of preparation. Impregnation, co-precipitation, and a novel method of thermal decomposition were applied to an inorganic precursor complex to generate the Cu-promoted alumina- and silica-supported cobalt catalysts. The precursors and the catalysts obtained by ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physical chemistry chemical physics : PCCP

دوره 14 48  شماره 

صفحات  -

تاریخ انتشار 2012